Farmington Bay Nutrient Study Update Theron Miller, Ph.D. Utah Division of Water Quality #### Beneficial Uses Shorebirds and Waterfowl (~750,000 hatchlings per year) #### Recreation #### Aquatic Life One eared grebe eats more that 15,000 Shrimp per day Cysts are commercially harvested (~20 million pounds per year) #### **NEEDS** DEVELOP APPROPRIATE METHODOLOGY FOR SITE-SPECIFIC NUTRIENT CRITERIA AND ASSOCIATED METHODOLOGY FOR BENEFICIAL USE ASSESSMENT #### **APPROACH** - UNDERSTAND "HOW THE ECOSYSTEM WORKS" - IDENTIFY SENSITIVE HABITAT, SEASON AND FOODCHAIN LINKS - IDENTIFY (TOLERANCE) THRESHOLDS AMONG IMPORTANT ECOSYSTEM COMPONENTS 1988 2002 #### **Shorebird Study Objectives** - -Nesting habitat - -Nesting Success - -Hatching success - -Aquatic life in their food chain #### Tolerant & Sensitive Macroinvertebrates (2004) Sheetflow Sites Tolerant species were more abundant at eutrophic sites Sensitive species were more abundant at oligotrophic sites, (e.g. reference sites) ## Kays Creek (south) Stomach contents by volume American avocet Black neck stilt #### Bear River Bird Refuge Stomach contents by volume black neck stilt #### Nesting and Hatching Success | Site | Year | Species | Total
Eggs Laid
(total nests) | Clutch
Size
(n) | Hatchabili
ty
(n) | Total Young Produced (average # eggs hatched / nest) | # Young
Leaving/Nest
(n) | |------|------|---------|-------------------------------------|-------------------------|-------------------------|--|--------------------------------| | FARM | 2005 | | | | | | | | | | AMAV | 1681
(481) | 3.86 ±
0.51
(247) | 0.96 ±
0.13
(247) | 914
(1.9) | 3.75 ± 0.57 (247) | | | | BNST | 769
(411) | 3.87 ± 0.48 (201) | 0.97 ±
0.11
(201) | 737
(1.79) | 3.76 ± 0.62
(201) | | | 2006 | | | | | | | | | | AMAV | 2146
(641) | 3.93 ±
0.30
(413) | 0.93 ±
0.15
(369) | 1538
(2.4) | 3.55 ± (435) | | | | BNST | 1123
(313) | 3.97 ±
0.21
(232) | 0.96 ±
0.12
(221) | 916
(2.9) | 3.77 ± (243) | ## Impoundments 2004 Conclusion • Analytical method shows general trends and relationships, however, we need a more sensitive tool to make the link between ecological function and beneficial use. #### 2005 Seasonal Percent Cover # Remaining Data Gaps (Wetlands) - •Determine relative importance of shading, waterfowl foraging, carp foraging and potential stress from excess P in the impoundments. - •Quantify nesting habitat characteristics in terms of plant communities and proximity to water. - •Quantify shorebird juvenile survivability and link this to habitat and food resource requirements. Water Quality Oxygen and H₂S Conditions ### Another hypothesis for the decline of brine shrimp: Invertebrate Predation #### Farmington Bay Open Water ## Farmington Bay Open Water Data Gaps - 1. Ascertain causes for low Artemia and Ephydra populations Water quality (H₂S, Low DO, cyanotoxins) - vs Predation - vs Salinity (failure to thrive at low salinity) - 2. Cyanotoxin toxicity to other wildlife - 3. Palatability of Nodularia to brine shrimp? (nitrogen fixed in Farmington Bay is assimilated by brine shrimp in Gilbert Bay)